Score normalization in multimodal biometric systems

نویسندگان

  • Anil K. Jain
  • Karthik Nandakumar
  • Arun Ross
چکیده

Multimodal biometric systems consolidate the evidence presented by multiple biometric sources and typically provide better recognition performance compared to systems based on a single biometric modality. Although information fusion in a multimodal system can be performed at various levels, integration at the matching score level is the most common approach due to the ease in accessing and combining the scores generated by different matchers. Since the matching scores output by the various modalities are heterogeneous, score normalization is needed to transform these scores into a common domain, prior to combining them. In this paper, we have studied the performance of different normalization techniques and fusion rules in the context of a multimodal biometric system based on the face, fingerprint and hand-geometry traits of a user. Experiments conducted on a database of 100 users indicate that the application of min-max, z-score, and tanh normalization schemes followed by a simple sum of scores fusion method results in better recognition performance compared to other methods. However, experiments also reveal that the min-max and zscore normalization techniques are sensitive to outliers in the data, highlighting the need for a robust and efficient normalization procedure like the tanh normalization. It was also observed that multimodal systems utilizing user-specific weights perform better compared to systems that assign the same weights to individual biometric traits for all users.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Score Normalization in Multimodal Systems using Generalized Extreme Value Distribution

In multimodal biometric systems, human identification is performed by fusing information in different ways like sensor-level, feature-level, score-level, rank-level and decision-level. Score-level fusion is preferred over other levels of fusion because of its low complexity and sufficient availability of information for fusion. However, the scores obtained from different unimodal systems are he...

متن کامل

On improving the Performance of Multimodal biometric authentication through Ant colony optimization

Multimodal biometric authentication systems are now widely used for providing the utmost security owing to its better recognition performance compared to unimodal systems. Multimodal biometric systems are developed by combining the information of individual biometrics. In this paper, a multimodal biometric system is proposed by combining the scores of iris and palm print traits of a person. Thi...

متن کامل

Score level Fusion based Multimodal Biometric Identification

Feature level based monomodal biometric systems perform person recognition based on a multiple sources of biometric information and are affected by problems like integration of evidence obtained from multiple cues and normalization of features codes since they are heterogeneous, in addition of monomodal biometric systems problems like noisy sensor data, non-universality and lack of individualit...

متن کامل

Performance evaluation of score level fusion in multimodal biometric systems

In a multimodal biometric system, the effective fusion method is necessary for combining information from various single modality systems. In this paper the performance of sum rule-based score level fusion and support vector machines (SVM)-based score level fusion are examined. Three biometric characteristics are considered in this study: fingerprint, face, and finger vein. We also proposed a n...

متن کامل

Efficient approach to Normalization of Multimodal Biometric Scores

Information fusion at the matching score level is widely used, due to the simplicity in combining the scores generated by different matchers. Since the matching scores output by various modalities are diverse in numerical range, score normalization is needed first, to transform these scores into a common domain. Then score fusion is to be carried out on the normalized scores. In this paper, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2005